International audienceThe simultaneous clustering of observations and features ofdatasets (known as co-clustering) has recently emerged as a central topic inmachine learning applications. However, most models focus on continuousdata in stationary scenarios, where cluster assignments do not evolve overtime. We propose in this paper the dynamic latent block model (dLBM),which extends the classical binary latent block model, making amenable suchanalysis to dynamic cases where data are counts. Our approach operates ontemporal count matrices allowing to detect abrupt changes in the way existingclusters interact with each other. The time breaks detection is performedthrough clustering of time instants, that allows for better model parsimony.The t...