In critical infrastructure applications, timely and consistent fault detection and diagnosis is an increasingly important operational process, especially in the energy sector where safety is of the utmost importance. To realise this, engineers have to manually analyse data acquired from several assets using predefined diagnostic processes, but this is a time-consuming process requiring significant amounts of specialist expert knowledge. Data-driven approaches to support fault detection and diagnosis, and other similar problems, can produce accurate results comparable to what the engineers can achieve in a fraction of the time. However, the majority of these data-driven techniques are black box techniques and lack explainability which is oft...