International audienceThe theory of belief functions (TBF) is now a widespread framework to deal and reason with uncertain and imprecise information, in particular to solve information fusion and clustering problems. Combination functions (rules) and distances are essential tools common to both the clustering and information fusion problems in the context of TBF, which have generated considerable literature. Distances and combination between evidence corpus of TBF are indeed often used within various clustering and classification algorithms, however their interplay and connections have seldom been investigated, which is the topic of this paper. More precisely, we focus on the problem of aggregating evidence corpus to obtain a representative...