We provide quantitative estimates for the supremum of the Hausdorff dimension of sets in the real line which avoid ε-approximations of arithmetic progressions. Some of these estimates are in terms of Szemerédi bounds. In particular, we answer a question of Fraser, Saito and Yu (IMRN 14:4419–4430, 2019) and considerably improve their bounds. We also show that Hausdorff dimension is equivalent to box or Assouad dimension for this problem, and obtain a lower bound for Fourier dimension.Fil: Fraser, Jonathan M.. University of St. Andrews; Reino UnidoFil: Shmerkin, Pablo Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Torcuato Di Tella. Departamento de Matemáticas y Estadística; Argentina. University...