Computational reflection allows us to turn verified decision procedures into efficient automated reasoning tools in proof assistants. The typical applications of such methodology include decidable algebraic theories such as equational theories of commutative rings and lattices. However, such existing tools are known not to cooperate with packed classes, a methodology to define mathematical structures in dependent type theory, that allows for the sharing of vocabulary across the inheritance hierarchy. Moreover, such tools do not support homomorphisms whose domain and codomain types may differ. This paper demonstrates how to implement reflexive tactics that support packed classes and homomorphisms. As applications of our methodology, we adapt...