Average-case complexity has two standard formulations, i.e., errorless complexity and error-prone complexity. In average-case complexity, a critical topic of research is to show the equivalence between these formulations, especially on the average-case complexity of NP. In this study, we present a relativization barrier for such an equivalence. Specifically, we construct an oracle relative to which NP is easy on average in the error-prone setting (i.e., DistNP ? HeurP) but hard on average in the errorless setting even by 2^o(n/log n)-size circuits (i.e., DistNP ? AvgSIZE[2^o(n/log n)]), which provides an answer to the open question posed by Impagliazzo (CCC 2011). Additionally, we show the following in the same relativized world: - Lower bo...