In the Non-Uniform k-Center (NUkC) problem, a generalization of the famous k-center clustering problem, we want to cover the given set of points in a metric space by finding a placement of balls with specified radii. In t-NUkC, we assume that the number of distinct radii is equal to t, and we are allowed to use k_i balls of radius r_i, for 1 ? i ? t. This problem was introduced by Chakrabarty et al. [ACM Trans. Alg. 16(4):46:1-46:19], who showed that a constant approximation for t-NUkC is not possible if t is unbounded, assuming ? ? NP. On the other hand, they gave a bicriteria approximation that violates the number of allowed balls as well as the given radii by a constant factor. They also conjectured that a constant approximation for t-NU...