This works deals with a problem concerning the algorithmic theory of affine algebraic groups. More precisely, it is possible to associate to any algebraic group defined over the field of the rational numbers a family of subgroups, the so-called arithmetic subgroups. In 1969, Borel and Harish-Chandra showed that every arithmetic group is finitely generated. Also, in the '80, Grunewald and Segal provided an algorithm for computing a finite set of generators of a given arithmetic subgroup of a given algebraic group. Unfortunately, their algorithm is not practical. In this work, we describe two original and practical algorithms for the same task, which work in the special cases in which the given algebraic group is unipotent or a torus, respect...
We present an exposition of our ongoing project in a new area of applicable mathematics: practical c...
© 2014 Elsevier Inc. We develop practical techniques to compute with arithmetic groups H≤SL(n,Q) for...
© 2014 Elsevier Inc. We develop practical techniques to compute with arithmetic groups H≤SL(n,Q) for...
AbstractLet G be a unipotent algebraic subgroup of some GLm(C) defined over Q. We describe an algori...
AbstractLet G be a unipotent algebraic subgroup of some GLm(C) defined over Q. We describe an algori...
We develop a practical algorithm to decide whether a finitely generated subgroup of a solvable algeb...
AbstractLet G be an affine algebraic group acting on an affine variety X. We present an algorithm fo...
AbstractLet G be an affine algebraic group acting on an affine variety X. We present an algorithm fo...
Les algèbres centrales simples ont de nombreuses applications en théorie des nombres, mais leur algo...
Les algèbres centrales simples ont de nombreuses applications en théorie des nombres, mais leur algo...
AbstractWe describe an algorithm for obtaining generators of the unit group of the integral group ri...
Les algèbres centrales simples ont de nombreuses applications en théorie des nombres, mais leur algo...
Abstract Let G be an affine algebraic group acting on an affine variety X. We present an algorithm f...
Le principal problème étudié est le calcul de l'adhérence de Zariski de groupes algébriques, et leur...
The unipotent groups are an important class of algebraic groups. We show that techniques used to com...
We present an exposition of our ongoing project in a new area of applicable mathematics: practical c...
© 2014 Elsevier Inc. We develop practical techniques to compute with arithmetic groups H≤SL(n,Q) for...
© 2014 Elsevier Inc. We develop practical techniques to compute with arithmetic groups H≤SL(n,Q) for...
AbstractLet G be a unipotent algebraic subgroup of some GLm(C) defined over Q. We describe an algori...
AbstractLet G be a unipotent algebraic subgroup of some GLm(C) defined over Q. We describe an algori...
We develop a practical algorithm to decide whether a finitely generated subgroup of a solvable algeb...
AbstractLet G be an affine algebraic group acting on an affine variety X. We present an algorithm fo...
AbstractLet G be an affine algebraic group acting on an affine variety X. We present an algorithm fo...
Les algèbres centrales simples ont de nombreuses applications en théorie des nombres, mais leur algo...
Les algèbres centrales simples ont de nombreuses applications en théorie des nombres, mais leur algo...
AbstractWe describe an algorithm for obtaining generators of the unit group of the integral group ri...
Les algèbres centrales simples ont de nombreuses applications en théorie des nombres, mais leur algo...
Abstract Let G be an affine algebraic group acting on an affine variety X. We present an algorithm f...
Le principal problème étudié est le calcul de l'adhérence de Zariski de groupes algébriques, et leur...
The unipotent groups are an important class of algebraic groups. We show that techniques used to com...
We present an exposition of our ongoing project in a new area of applicable mathematics: practical c...
© 2014 Elsevier Inc. We develop practical techniques to compute with arithmetic groups H≤SL(n,Q) for...
© 2014 Elsevier Inc. We develop practical techniques to compute with arithmetic groups H≤SL(n,Q) for...