Computational methods adopted in the field of Systems Biology require the complete knowledge of reaction kinetic constants to perform simulations of the dynamics and understand the emergent behavior of biochemical systems. However, kinetic parameters of biochemical reactions are often difficult or impossible to measure, thus they are generally inferred from experimental data, in a process known as Parameter Estimation (PE). We consider here a PE methodology that exploits Particle Swarm Optimization (PSO) to estimate an appropriate kinetic parameterization, by comparing experimental time-series target data with in silica dynamics, simulated by using the parameterization encoded by each particle. In this work we present three different reboot...