Approximate computing techniques are often used to improve the performance of applications that can tolerate some amount of impurity in the calculations or data. In the context of embedded and mobile systems, a broad number of applications have exploited approximation techniques to improve performance and overcome the limited capabilities of the hardware. On such systems, even small performance improvements can be sufficient to meet scheduled requirements such as hard real-time deadlines. We study the approximation of memory-bound applications on mobile GPUs using kernel perforation, an approximation technique that exploits the availability of fast GPU local memory to provide high performance with more accurate results. Using this approxima...