Model-Based Evolutionary Algorithms (MBEAs) can be highly scalable by virtue of linkage (or variable interaction) learning. This requires, however, that the linkage model can capture the exploitable structure of a problem. Usually, a single type of linkage structure is attempted to be captured using models such as a linkage tree. However, in practice, problems may exhibit multiple linkage structures. This is for instance the case in multi-objective optimization when the objectives have different linkage structures. This cannot be modelled sufficiently well when using linkage models that aim at capturing a single type of linkage structure, deteriorating the advantages brought by MBEAs. Therefore, here, we introduce linkage kernels, whereby a...