The commercial application of cobalt-based Fischer-Tropsch synthesis (FTS) suffers from catalyst deactivation. One of the main deactivation mechanisms under industrial conditions is sintering. In this work, we explored the role of manganese oxide as a structural promoter against sintering in a carbon nanofiber supported cobalt model catalyst. We employed in situ Mössbauer emission spectroscopy to study cobalt sintering in synthesis gas as a function of the steam partial pressure, which mimics high CO conversion during FTS. Steam accelerates the sintering of non-promoted metallic cobalt particles. Model experiments point to a synergistic effect between carbon monoxide and steam on cobalt sintering. In the mangense-promoted case, sintering is...