A graph G=(V,E) is a mathematical model for a network with vertex set V and edge set E. A Random Graph model is a probabilistic graph. A Random Geometric Graph is a Random Graph were each vertex has a location in a space χ. We compare the Erdos-Rényi random graph, G(n,p), to the Random Geometric Graph model, RGG(n,r) where, in general we use r=c / (n^(-1/d)), with dimension d. It is known that for p = λ*/n the k-core has a first-order phase transition in G(n,p) where λ* is the critical value for the k-core. The k-core is a global property of a graph. The k-core is the largest induced subgraph where each vertex has at least degree k. We suggest by simulations and a supportive proof that for the RGG-model a first-order phase transition not pl...