Properties of random mixed states of dimension N distributed uniformly with respect to the Hilbert-Schmidt measure are investigated. We show that for large N, due to the concentration of measure, the trace distance between two random states tends to a fixed number $\widetilde{D}=1/4+1/\pi$, which yields the Helstrom bound on their distinguishability. To arrive at this result, we apply free random calculus and derive the symmetrized Marchenko-Pastur distribution, which is shown to describe numerical data for the model of coupled quantum kicked tops. Asymptotic value for the root fidelity between two random states, $\sqrt{F} = \frac{3}{4}$, can serve as a universal reference value for further theoretical and experimental studies. Analogous re...
We consider the problem of ambiguous discrimination of two quantum states when we are only allowed t...
We give a review of different forms of uncertainty relations for mixed quantum states obtained over ...
34 pages; v.3: reorganized proof, new results only in section 7.1, references added; v.2: main resul...
Compact expressions for the average subentropy and coherence are obtained for random mixed states th...
We investigate the generic aspects of quantum coherence guided by the concentration of measure pheno...
We study entanglement and other correlation properties of random states in high-dimensional bipartit...
We study entanglement and other correlation properties of random states in high-dimensional bipartit...
We show that measuring any two quantum states by a random POVM, under a suitable definition of rando...
We study the measurement for the unambiguous discrimination of two mixed quantum states that are des...
The Schmidt coefficients capture all entanglement properties of a pure bipartite state and therefore...
For a system randomly prepared in a number of quantum states, we present a lower bound for the disti...
We consider the problem of discriminating two different quantum states in the setting of asymptotica...
For a system randomly prepared in a number of quantum states, we present a lower bound for the disti...
We consider the problem of discriminating two different quantum states in the setting of asymptotica...
We discuss an alternative to relative entropy as a measure of distance between mixed quantum states....
We consider the problem of ambiguous discrimination of two quantum states when we are only allowed t...
We give a review of different forms of uncertainty relations for mixed quantum states obtained over ...
34 pages; v.3: reorganized proof, new results only in section 7.1, references added; v.2: main resul...
Compact expressions for the average subentropy and coherence are obtained for random mixed states th...
We investigate the generic aspects of quantum coherence guided by the concentration of measure pheno...
We study entanglement and other correlation properties of random states in high-dimensional bipartit...
We study entanglement and other correlation properties of random states in high-dimensional bipartit...
We show that measuring any two quantum states by a random POVM, under a suitable definition of rando...
We study the measurement for the unambiguous discrimination of two mixed quantum states that are des...
The Schmidt coefficients capture all entanglement properties of a pure bipartite state and therefore...
For a system randomly prepared in a number of quantum states, we present a lower bound for the disti...
We consider the problem of discriminating two different quantum states in the setting of asymptotica...
For a system randomly prepared in a number of quantum states, we present a lower bound for the disti...
We consider the problem of discriminating two different quantum states in the setting of asymptotica...
We discuss an alternative to relative entropy as a measure of distance between mixed quantum states....
We consider the problem of ambiguous discrimination of two quantum states when we are only allowed t...
We give a review of different forms of uncertainty relations for mixed quantum states obtained over ...
34 pages; v.3: reorganized proof, new results only in section 7.1, references added; v.2: main resul...