International audienceIf $X$ is a compact set, a {\it topological contraction} is a self-embedding $f$ such that the intersection of the successive images $f^k(X)$, $k>0$, consists of one point. In dimension 3, we prove that there are smooth topological contractions of the handlebodies of genus $\geq 2$ whose image is essential. Our proof is based on an easy criterion for a simple curve to be essential in a handlebody
We construct a small, hyperbolic 3-manifold M with the property that, for any integer g >= 2, the...
For every integer $g\ge 2$ we construct 3-dimensional genus-$g$ 1-handlebodies smoothly embedded in ...
We give a presentation for a non-split compact surface embedded in the 3-sphere $S^3$ by using diagr...
AbstractWe construct a class of simple, small knots in a handlebody of genus g, for any g>1
If H is a spatial handlebody, i.e. a handlebody embedded in the 3-sphere, a spine of H is a graph Γ...
We consider homologically essential simple closed curves on Seifert surfaces of genus one knots in $...
AbstractOur purpose here is to give a simple topological proof of a theorem of Harer, that the simpl...
We show that a compact hyperbolizable acylindrical 3-manifold with non-empty incompressible boundary...
The main theorem of this paper is a generalisation of well known results about Dehn surgery to the c...
AbstractIf M is a manifold with compressible boundary, we analyze essential disks in M, as well as i...
In this paper we prove that the problem of deciding contractibility of an arbitrary closed curve on ...
AbstractGiven a graph in 3-space, in general knotted, can one construct a surface containing the gra...
The fundamental group of a closed surface of genus at least two admits a natural action on the curve...
AbstractAn infinite family of inequivalent genus 2 handlebodies embedded in S3 is described, all of ...
Let $D$ be an alternating link diagram on a surface $\Sigma$, such that $D$ cuts $\Sigma$ into disks...
We construct a small, hyperbolic 3-manifold M with the property that, for any integer g >= 2, the...
For every integer $g\ge 2$ we construct 3-dimensional genus-$g$ 1-handlebodies smoothly embedded in ...
We give a presentation for a non-split compact surface embedded in the 3-sphere $S^3$ by using diagr...
AbstractWe construct a class of simple, small knots in a handlebody of genus g, for any g>1
If H is a spatial handlebody, i.e. a handlebody embedded in the 3-sphere, a spine of H is a graph Γ...
We consider homologically essential simple closed curves on Seifert surfaces of genus one knots in $...
AbstractOur purpose here is to give a simple topological proof of a theorem of Harer, that the simpl...
We show that a compact hyperbolizable acylindrical 3-manifold with non-empty incompressible boundary...
The main theorem of this paper is a generalisation of well known results about Dehn surgery to the c...
AbstractIf M is a manifold with compressible boundary, we analyze essential disks in M, as well as i...
In this paper we prove that the problem of deciding contractibility of an arbitrary closed curve on ...
AbstractGiven a graph in 3-space, in general knotted, can one construct a surface containing the gra...
The fundamental group of a closed surface of genus at least two admits a natural action on the curve...
AbstractAn infinite family of inequivalent genus 2 handlebodies embedded in S3 is described, all of ...
Let $D$ be an alternating link diagram on a surface $\Sigma$, such that $D$ cuts $\Sigma$ into disks...
We construct a small, hyperbolic 3-manifold M with the property that, for any integer g >= 2, the...
For every integer $g\ge 2$ we construct 3-dimensional genus-$g$ 1-handlebodies smoothly embedded in ...
We give a presentation for a non-split compact surface embedded in the 3-sphere $S^3$ by using diagr...