International audienceA linear graph is a graph whose vertices are linearly ordered. This linear ordering allows pairs of disjoint edges to be either preceding (<), nesting (@) or crossing (G). Given a family of linear graphs, and a non-empty subset R f<;@; Gg, we are interested in the Maximum Common Structured Pattern (MCSP) problem: nd a maximum size edge-disjoint graph, with edge-pairs all comparable by one of the relations in R, that occurs as a subgraph in each of the linear graphs of the family. The MCSP problem generalizes many structure-comparison and structureprediction problems that arise in computational molecular biology. We give tight hardness results for the MCSP problem for f<; Gg-structured patterns and f@; Gg-structured pat...
We study structured linear systems and structured linear programs (LPs) from both algorithm and comp...
AbstractWe introduce the maximum common subgraph problem for multiple graphs (Multi-MCS) inspired by...
In this paper, we study the following problem: given are adjacency matrices of two simple graphs. Fi...
International audienceA linear graph is a graph whose vertices are linearly ordered. This linear ord...
International audienceA linear graph is a graph whose vertices are linearly ordered. This linear ord...
AbstractA linear graph is a graph whose vertices are linearly ordered. This linear ordering allows p...
International audienceA linear graph is a graph whose vertices are linearly ordered. This linear ord...
International audienceA linear graph is a graph whose vertices are linearly ordered. This linear ord...
A linear graph is a graph whose vertices are linearly ordered. This linear ordering allows pairs of...
International audienceA linear graph is a graph whose vertices are linearly ordered. This linear ord...
A linear graph is a graph whose vertices are linearly ordered. This linear ordering allows pairs of ...
AbstractIn the context of non-coding RNA (ncRNA) multiple structural alignment, Davydov and Batzoglo...
In the context of non-coding RNA (ncRNA) multiple structural alignment, Davydov and Batzoglou (2006)...
AbstractIn the context of non-coding RNA (ncRNA) multiple structural alignment, Davydov and Batzoglo...
In this paper, we study the following problem: given are adjacency matrices of two simple graphs. Fi...
We study structured linear systems and structured linear programs (LPs) from both algorithm and comp...
AbstractWe introduce the maximum common subgraph problem for multiple graphs (Multi-MCS) inspired by...
In this paper, we study the following problem: given are adjacency matrices of two simple graphs. Fi...
International audienceA linear graph is a graph whose vertices are linearly ordered. This linear ord...
International audienceA linear graph is a graph whose vertices are linearly ordered. This linear ord...
AbstractA linear graph is a graph whose vertices are linearly ordered. This linear ordering allows p...
International audienceA linear graph is a graph whose vertices are linearly ordered. This linear ord...
International audienceA linear graph is a graph whose vertices are linearly ordered. This linear ord...
A linear graph is a graph whose vertices are linearly ordered. This linear ordering allows pairs of...
International audienceA linear graph is a graph whose vertices are linearly ordered. This linear ord...
A linear graph is a graph whose vertices are linearly ordered. This linear ordering allows pairs of ...
AbstractIn the context of non-coding RNA (ncRNA) multiple structural alignment, Davydov and Batzoglo...
In the context of non-coding RNA (ncRNA) multiple structural alignment, Davydov and Batzoglou (2006)...
AbstractIn the context of non-coding RNA (ncRNA) multiple structural alignment, Davydov and Batzoglo...
In this paper, we study the following problem: given are adjacency matrices of two simple graphs. Fi...
We study structured linear systems and structured linear programs (LPs) from both algorithm and comp...
AbstractWe introduce the maximum common subgraph problem for multiple graphs (Multi-MCS) inspired by...
In this paper, we study the following problem: given are adjacency matrices of two simple graphs. Fi...