Dating back to the 19th century, the discovery of processing stages has been of great interest to researchers in cognitive science. The goal of this paper is to demonstrate the validity of a recently developed method, hidden semi-Markov model multivariate pattern analysis (HsMM-MVPA), for discovering stages directly from EEG data, in contrast to classical reaction-time-based methods. To test the validity of stages discovered with the HsMM-MVPA method, we applied it to two relatively simple tasks where the interpretation of processing stages is straightforward. In these visual discrimination EEG data experiments, perceptual processing and decision difficulty were manipulated. The HsMM-MVPA revealed that participants progressed through five c...