El objetivo de este trabajo es proponer nuevas técnicas de Fine-Tuning para mejorar los modelos del estado del arte para tareas de Pregunta-Respuesta. Para ello además, se realizará un estudio exhaustivo del estado del arte del Deep Learning aplicado a NLP, con un foco especial en los modelos de lenguaje basados en Transformers, de esta manera estaremos usando los modelos y técnicas más avanzados que se están usando en este momento. Los resultados de este trabajo son muy relevantes ya que pueden demostrar ayudar a conseguir mejorar los resultados de los modelos del estado de arte de una manera muy sencilla de implementar y que no supone un gran gasto computacional.---ABSTRACT---The objective of this work is to propose new Fine-Tuning techni...
Recent works have shown promising results of prompt tuning in stimulating pre-trained language model...
These improvements open many possibilities in solving Natural Language Processing downstream tasks. ...
The field of natural language processing (NLP) has recently undergone a paradigm shift. Since the in...
We propose TandA, an effective technique for fine-tuning pre-trained Transformer models for natural ...
Recentemente, modelos compostos por apenas módulos neurais de Recuperação de Informação e Compreensã...
La aparición de las redes sociales ha supuesto un cambio en el paradigma de la comunicación en el mu...
Question answering systems are mainly concerned with fulfilling an information query written in natu...
In Natural Language Processing (NLP), Automatic Question Generation (AQG) is an important task that ...
For many tasks, state-of-the-art results have been achieved with Transformer-based architectures, re...
Natural Language Processing is a field of Artificial Intelligence referring to the ability of comput...
Transformer models have achieved promising results on natural language processing (NLP) tasks includ...
Este trabajo tiene como objetivo el estudio minucioso del estado del arte de la clasificación de tex...
The pre-training of large language models usually requires massive amounts of resources, both in ter...
Theoretical thesis.Bibliography: pages 49-571 Introduction -- 2 Background and literature review -- ...
This project is about the experimental study and implementations of Question & Answer(Q&A) systems ...
Recent works have shown promising results of prompt tuning in stimulating pre-trained language model...
These improvements open many possibilities in solving Natural Language Processing downstream tasks. ...
The field of natural language processing (NLP) has recently undergone a paradigm shift. Since the in...
We propose TandA, an effective technique for fine-tuning pre-trained Transformer models for natural ...
Recentemente, modelos compostos por apenas módulos neurais de Recuperação de Informação e Compreensã...
La aparición de las redes sociales ha supuesto un cambio en el paradigma de la comunicación en el mu...
Question answering systems are mainly concerned with fulfilling an information query written in natu...
In Natural Language Processing (NLP), Automatic Question Generation (AQG) is an important task that ...
For many tasks, state-of-the-art results have been achieved with Transformer-based architectures, re...
Natural Language Processing is a field of Artificial Intelligence referring to the ability of comput...
Transformer models have achieved promising results on natural language processing (NLP) tasks includ...
Este trabajo tiene como objetivo el estudio minucioso del estado del arte de la clasificación de tex...
The pre-training of large language models usually requires massive amounts of resources, both in ter...
Theoretical thesis.Bibliography: pages 49-571 Introduction -- 2 Background and literature review -- ...
This project is about the experimental study and implementations of Question & Answer(Q&A) systems ...
Recent works have shown promising results of prompt tuning in stimulating pre-trained language model...
These improvements open many possibilities in solving Natural Language Processing downstream tasks. ...
The field of natural language processing (NLP) has recently undergone a paradigm shift. Since the in...