Tato práce se zabývá problematikou posilovaného učení aplikovaného na úlohu autonomního řízení vozidla. Nejprve je probrána nezbytná teorie posilovaného učení, která je zakončena představením nejmodernějších aktor-kritik metod. Z nich je vybrána metoda Proximal Policy Optimization , která je následně aplikována na tuto úlohu. Pro tento účel je také zvolen závodní simulátor TORCS. Naším cílem je naučit v simulovaném prostředí agenta autonomně řídit, s ohledem na jeho budoucí aplikaci v reálném prostředí v podobě zmenšeného RC modelu vozidla. Za tímto účelem jsou simulovány podmínky vzdáleného učení a ovládání vozidla v cloudu a to v podobě simulace ztráty paketů s daty od senzorů a aktuátorů nebo simulace zašuměných dat. Také jsou provedeny ...