Upscaling of the mechanical properties of polycrystalline aggregates might require complex and time-consuming procedures, if adopted to help in the design and reliability analysis of micro-devices. In inertial micro electro-mechanical systems (MEMS), the movable parts are often made of polycrystalline silicon films and, due to the current trend towards further miniaturization, their mechanical properties must be characterized not only in terms of average values but also in terms of their scattering. In this work, we propose two convolutional network models based on the ResNet and DenseNet architectures, to learn the features of the microstructural morphology and allow automatic upscaling of the statistical properties of the said film proper...