Acoustic source mapping usually involves planar microphone arrays and calculation points located on a surface at a certain distance with respect to the array. An implicit assumption that sources are located on this surface is therefore performed. However, in some application, such as aeroacoustic source identification, this assumption may be wrong and produce misleading results. For this reason, it is interesting to extend the common acoustic mapping techniques to three-dimensional volumetric mapping. Direct beamforming techniques are not suited for volumetric imaging due to poor spatial resolution in radial direction from the array centre. Therefore, more refined algorithms, like deconvolution techniques or inverse methods, are required to...