Publisher Copyright: © 2016 IEEE.The framework of sim-to-real learning, i.e., training policies in simulation and transferring them to real-world systems, is one of the most promising approaches towards data-efficient learning in robotics. However, due to the inevitable reality gap between the simulation and the real world, a policy learned in the simulation may not always generate a safe behaviour on the real robot. As a result, during policy adaptation in the real world, the robot may damage itself or cause harm to its surroundings. In this work, we introduce SafeAPT, a multi-goal robot learning algorithm that leverages a diverse repertoire of policies evolved in simulation and transfers the most promising safe policy to the real robot th...