Within the framework of the two-dimensional Ericksen-Leslie model, we explore the effect of geometric confinement on the spontaneous flow of active nematic gels. The nematic particles are assumed to flow on a cylindrical surface, while a degenerate tangential anchoring is enforced. Using the linear approximation of the motion equations, we show that there is a close interplay among extrinsic curvature, flow, director alignment, and activity. We find that the extrinsic curvature promotes the director alignment parallel to the cylindrical axis and is responsible for raising the critical threshold with respect to the flat case. Our analysis reveals a very rich scenario where the key quantities are the activity coefficient, the tumbling paramet...