We propose a unique cluster-based retrieval (CBR) strategy using a new cluster-skipping inverted file for improving query processing efficiency. The new inverted file incorporates cluster membership and centroid information along with the usual document information into a single structure. In our incremental-CBR strategy, during query evaluation, both best(-matching) clusters and the best(-matching) documents of such clusters are computed together with a single posting-list access per query term. As we switch from term to term, the best clusters are recomputed and can dynamically change. During query-document matching, only relevant portions of the posting lists corresponding to the best clusters are considered and the rest are skipped. The...