International audienceIn Part I of this paper, we developed a homogenization-based constitutive model for the effective behavior of isotropic porous elastomers subjected to finite deformations. In this part, we make use of the proposed model to predict the overall response of porous elastomers with (compressible and incompressible) Gent matrix phases under a wide variety of loading conditions and initial values of porosity. The results indicate that the evolution of the underlying microstructure—which results from the finite changes in geometry that are induced by the applied loading—has a significant effect on the overall behavior of porous elastomers. Further, the model is in very good agreement with the exact and numerical results availa...