The solution of the elastodynamic equations using boundary element methods(BEMs) gives rise to fully-populated matrix equations. Earlier investigations on the Helmholtzand Maxwell equations have established that the Fast Multipole (FM) method reduces the com-plexity of a BEM solution to $N \log 2 N$ per GMRES iteration. The present article addresses theextension of the FM-BEM strategy to 3D elastodynamics in the frequency domain. Efficiencyand accuracy are demonstrated on numerical examples involving up to $N = O(10^6 )$ nodalunknowns.La résolution des équations de l’élastodynamique par la méthode des éléments defrontière (BEM) conduit à un système linéaire plein. Faisant suite à des travaux sur les équa-tions de Helmholtz et Maxwell ayant ...