This work contributes to the development of Evolutionary Multi-objective Algorithms. The increasing interest for these techniques observed since the last decade is mainly due to their ability to find a (good) sampling of the whole set of the Pareto compromises in a single run unlike the traditional multiobjective optimization approaches that provide only one compromise solution which, what is more, highly depends on the subjective choice of certain parameters. Indeed, when solving the real-world multi-objective optimization problems and, in particular, design problems, it is often preferable to make the final decision from the informations as complete as possible even if an additional computation effort is needed. In this thesis, two proble...