International audienceA high strain rate tensile testing technique for sheet materials is presented which makes use of a split Hopkinson pressure bar system in conjunction with a load inversion device. With compressive loads applied to its boundaries, the load inversion device introduces tension into a sheet specimen. Two output bars are used to minimize the effect of bending waves on the output force measurement. A Digital Image Correlation (DIC) algorithm is used to determine the strain history in the specimen gage section based on high speed video imaging. Detailed finite element analysis of the experimental set-up is performed to validate the design of the load inversion device. It is shown that under the assumption of perfect alignment...