International audienceTransition to uniform turbulence in cylindrical pipe flow occurs experimentally via the spatial expansion of isolated coherent structures called slugs, triggered by localized finite-amplitude disturbances. We study this process numerically by examining the preferred route in phase space through which a critical disturbance initiates a slug. This entails first identifying the relative attractor - edge state - on the laminar-turbulent boundary in a long pipe and then studying the dynamics along its low-dimensional unstable manifold, leading to the turbulent state. Even though the fully turbulent state delocalizes at Re ˜ 2300, the edge state is found to be localized over the range Re = 2000-6000, and progressively reduce...