Multi-agent geographical models integrate very large numbers of spatial interactions. In order to validate those models large amount of computing is necessary for their simulation and calibration. Here a new data processing chain including an automated calibration procedure is experimented on a computational grid using evolutionary algorithms. This is applied for the first time to a geographical model designed to simulate the evolution of an early urban settlement system. The method enables us to reduce the computing time and provides robust results. Using this method, we identify several parameter settings that minimise three objective functions that quantify how closely the model results match a reference pattern. As the values of each pa...