International audienceGiven a closed Riemann surface $(\Sigma,g)$, we use a minmax scheme together with compactness, quantization results and with sharp energy estimates to prove the existence of positive critical points of the functional$$J_{p,\beta}(u)=\frac{2-p}{2}\left(\frac{p\|u\|_{H^1}^2}{2\beta} \right)^{\frac{p}{2-p}}-\ln \int_\Sigma \left(e^{u_+^p}-1\right) dv_g\,,$$for every $p\in (1,2)$ and $\beta>0$, {or} for $p=1$ and $\beta\in (0,\infty)\setminus 4\pi\mathbb{N}$. Letting $p\uparrow 2$ we obtain positive critical points of the Moser-Trudinger functional$$F(u):=\int_\Sigma \left(e^{u^2}-1\right)dv_g$$constrained to $\mathcal{E}_\beta:=\left\{v\text{ s.t. }\|v\|_{H^1}^2=\beta\right\}$ for any $\beta>0$
We consider the Trudinger-Moser type functional \[ J_\lambda(v)=\frac{1}{2}\int_\Omega|\nabla v|^...
We consider the Trudinger-Moser type functional \[ J_\lambda(v)=\frac{1}{2}\int_\Omega|\nabla v|^...
In a bounded, smooth domain in R^2, we consider a functional I(u) in the supercritical Trudinger\u20...
International audienceGiven a closed Riemann surface $(\Sigma,g)$, we use a minmax scheme together w...
International audienceGiven a closed Riemann surface $(\Sigma,g)$, we use a minmax scheme together w...
Given a closed Riemann surface $(\Sigma,g)$ and any positive smooth weight, we use a minmax scheme t...
We discuss the existence of critical points of the Moser-Trudinger functional in dimension 2 with ar...
On the unit disk B-1 subset of R-2 we study the Moser-Trudinger functional E(u) = integral(B1) (e...
Given a smoothly bounded non-contractible domain $\Omega\subset \mathbb{R}^2$, we prove the existenc...
Given a smoothly bounded non-contractible domain $\Omega\subset \mathbb{R}^2$, we prove the existenc...
Given a closed Riemann surface $(Sigma,g)$, we use a minmax scheme together with compactness, quanti...
In this thesis, I study the connections between extremal eigenvalue problems and the existence of ex...
International audienceDruet [6] proved that if $(f_\gamma)_\gamma$ is a sequence of Moser-Trudinger ...
Let Omega be a bounded smooth domain in R-2n (n >= 2). In this note, we consider the functional ...
We study the Dirichlet energy of non-negative radially symmetric critical points of the Moser–Trudin...
We consider the Trudinger-Moser type functional \[ J_\lambda(v)=\frac{1}{2}\int_\Omega|\nabla v|^...
We consider the Trudinger-Moser type functional \[ J_\lambda(v)=\frac{1}{2}\int_\Omega|\nabla v|^...
In a bounded, smooth domain in R^2, we consider a functional I(u) in the supercritical Trudinger\u20...
International audienceGiven a closed Riemann surface $(\Sigma,g)$, we use a minmax scheme together w...
International audienceGiven a closed Riemann surface $(\Sigma,g)$, we use a minmax scheme together w...
Given a closed Riemann surface $(\Sigma,g)$ and any positive smooth weight, we use a minmax scheme t...
We discuss the existence of critical points of the Moser-Trudinger functional in dimension 2 with ar...
On the unit disk B-1 subset of R-2 we study the Moser-Trudinger functional E(u) = integral(B1) (e...
Given a smoothly bounded non-contractible domain $\Omega\subset \mathbb{R}^2$, we prove the existenc...
Given a smoothly bounded non-contractible domain $\Omega\subset \mathbb{R}^2$, we prove the existenc...
Given a closed Riemann surface $(Sigma,g)$, we use a minmax scheme together with compactness, quanti...
In this thesis, I study the connections between extremal eigenvalue problems and the existence of ex...
International audienceDruet [6] proved that if $(f_\gamma)_\gamma$ is a sequence of Moser-Trudinger ...
Let Omega be a bounded smooth domain in R-2n (n >= 2). In this note, we consider the functional ...
We study the Dirichlet energy of non-negative radially symmetric critical points of the Moser–Trudin...
We consider the Trudinger-Moser type functional \[ J_\lambda(v)=\frac{1}{2}\int_\Omega|\nabla v|^...
We consider the Trudinger-Moser type functional \[ J_\lambda(v)=\frac{1}{2}\int_\Omega|\nabla v|^...
In a bounded, smooth domain in R^2, we consider a functional I(u) in the supercritical Trudinger\u20...