International audienceIn this paper, we propose two new generic attacks on the rank syndrome decoding (RSD) problem. Let C be a random [n, k] rank code over GF(qm) and let y = x + e be a received word, such that x ∈ C and rank(e) = r. The first attack, the support attack, is combinatorial and permits to recover an error e of rank weight r in min(O((n - k)3m3qr1(km/n)J, O((n - k)3m3q⌈(r-1)I(((k+1)m)/n)J))⌉ operations on GF(q). This new attack improves the exponent for the best generic attack for the RSD problem in the case n > m, by introducing the ratio m/n in the exponential coefficient of the previously best known attacks. The second attack, the annulator polynomial attack, is an algebraic attack based on the theory of q-polynomials intro...