42 pages, 12 figures; small changes in the expositionThe nonlinear Schr\"odinger equation in the weakly nonlinear regime with random Gaussian fields as initial data is considered. The problem is set on the torus in any dimension greater than two. A conjecture in statistical physics is that there exists a kinetic time scale depending on the frequency localisation of the data and on the strength of the nonlinearity, on which the expectation of the squares of moduli of Fourier modes evolve according to an effective equation: the so-called kinetic wave equation. When the kinetic time for our setup is $1$, we prove this conjecture up to an arbitrarily small polynomial loss. When the kinetic time is larger than $1$, we obtain its validity on a mo...