Abstract Partial response to chemotherapy leads to disease resurgence. Upon treatment, a subpopulation of cancer cells, called drug-tolerant persistent cells, display a transitory drug tolerance that lead to treatment resistance 1,2 . Though drug-tolerance mechanisms remain poorly known, they have been linked to non-genomic processes, including epigenetics, stemness and dormancy 2–4 . 5-fluorouracil (5-FU), the most widely used chemotherapy in cancer treatment, is associated with resistance. While prescribed as an inhibitor of DNA replication, 5-FU alters all RNA pathways 5–9 . Here, we show that 5-FU treatment leads to the unexpected production of fluorinated ribosomes, exhibiting altered mRNA translation. 5-FU is incorporated into ribosom...