In this paper, we present refining graph representation for cross-domain recommendation (CDR) based on edge pruning considering feature distribution in a latent space. Conventional graph-based CDR methods have utilized all ratings and purchase histories of user's products. However, some items purchased by users are not related to the domain for recommendation, and this information becomes noise when making CDR. So, the proposed method introduces edge pruning into the latest graph-based CDR method to refine graph representation. To compare the item embedding features calculated in different domains, we construct a latent space and perform edge pruning through their correlations. Additionally, we introduce a state-of-the-art graph neural netw...