This study examined the relative performance of Deep Reinforcement Learning compared to a neuroevolution algorithm called NEAT when used to train AIs in a discrete game environment. Today there are many AI techniques to choose from among which NEAT and RL have become popular alternatives. As manifested by game-related research papers these methods allow for automating AI development. With the end of Moore’s law advances in computer hardware have started leaning towards parallelism. NEAT and RL have similar yet at the same time distinct ways of training neural networks which benefit from parallelism via repetitive simulations. To evaluate both solutions a framework for statistical sampling is introduced using levels that resemble problems fr...