The accurate prediction of extreme weather events is an important and challenging task, and has typically relied on numerical simulations of the atmosphere. Here, we combine insights from numerical forecasts with recent developments in dynamical systems theory, which describe atmospheric states in terms of their persistence (theta(-1)) and local dimension (d), and inform on how the atmosphere evolves to and from a given state of interest. These metrics are intuitively linked to the intrinsic predictability of the atmosphere: a highly persistent, low-dimensional state will be more predictable than a low-persistence, high-dimensional one. We argue that theta(-1)andd,derived from reanalysis sea level pressure (SLP) and geopotential height (Z50...