Topology optimization aims to find the best material layout subject to given constraints. The so-called material distribution methods cast the governing equation as an extended or fictitious domain problem, in which a coefficient field represents the design. When solving the governing equation using the finite element method, a large number of elements are used to discretize the design domain, and an element-wise constant function approximates the coefficient field in the considered design domain. This article presents a spectral analysis of the (large) coefficient matrices associated with the linear systems stemming from the finite element discretization of a linearly elastic problem for an arbitrary coefficient field. Based on the spectra...