Limitations or constraints in signal acquisition systems often lead to signals that are measured in a compressive manner, i.e. involving dimensionality reduction, or information that is compressed, distorted, or lost. Recovering a signal from compressive measurements is thus an inverse problem which can be challenging to solve. A popular assumption is that the original signal is sparse in an appropriate domain, i.e. can be represented as a linear combination of a few basis signals – called atoms – from a dictionary. In this thesis we propose contributions in the field of sparse signal recovery from compressive measurements. We first address the problem of recovering a signal from linear compressive measurements, such as noisy or missing mea...
Binary measurements arise naturally in a variety of statistical and engineering applications. They m...
It is now well understood that (1) it is possible to reconstruct sparse signals exactly from what ap...
This thesis deals with an emerging area of signal processing, called Compressive Sensing (CS), that ...
Sparse coding and dictionary learning are popular techniques for linear inverse problems such as den...
Compressed sensing takes advantage that most of the natural signals can be sparsely represented via ...
In this paper we show that, surprisingly, it is possible to recover sparse signals from nonlinearly ...
The recently introduced theory of Compressive Sensing (CS) enables a new method for signal recovery ...
In this paper, we investigate dictionary learning (DL) from sparsely corrupted or compressed signals...
In real-world applications, most of the signals can be approximated by sparse signals. When dealing ...
Compressive sensing (CS) has recently emerged as a powerful framework for acquiring sparse signals. ...
Abstract—We investigate the recovery of signals exhibiting a sparse representation in a general (i.e...
This paper considers sparse signal recovery under sensing constraints originating from the limitatio...
Sparse signals can be recovered from a reduced set of samples by using compressive sensing algorithm...
Compressed sensing has a wide range of applications that include error correction, imaging,...
One-bit compressive sensing has extended the scope of sparse recovery by showing that sparse signals...
Binary measurements arise naturally in a variety of statistical and engineering applications. They m...
It is now well understood that (1) it is possible to reconstruct sparse signals exactly from what ap...
This thesis deals with an emerging area of signal processing, called Compressive Sensing (CS), that ...
Sparse coding and dictionary learning are popular techniques for linear inverse problems such as den...
Compressed sensing takes advantage that most of the natural signals can be sparsely represented via ...
In this paper we show that, surprisingly, it is possible to recover sparse signals from nonlinearly ...
The recently introduced theory of Compressive Sensing (CS) enables a new method for signal recovery ...
In this paper, we investigate dictionary learning (DL) from sparsely corrupted or compressed signals...
In real-world applications, most of the signals can be approximated by sparse signals. When dealing ...
Compressive sensing (CS) has recently emerged as a powerful framework for acquiring sparse signals. ...
Abstract—We investigate the recovery of signals exhibiting a sparse representation in a general (i.e...
This paper considers sparse signal recovery under sensing constraints originating from the limitatio...
Sparse signals can be recovered from a reduced set of samples by using compressive sensing algorithm...
Compressed sensing has a wide range of applications that include error correction, imaging,...
One-bit compressive sensing has extended the scope of sparse recovery by showing that sparse signals...
Binary measurements arise naturally in a variety of statistical and engineering applications. They m...
It is now well understood that (1) it is possible to reconstruct sparse signals exactly from what ap...
This thesis deals with an emerging area of signal processing, called Compressive Sensing (CS), that ...