Recent developments in quaternion-valued widely linear processing have established that the exploitation of complete second-order statistics requires consideration of both the standard covariance and the three complementary covariance matrices. Although such matrices have a tremendous amount of structure and their decomposition is a powerful tool in a variety of applications, the non-commutative nature of the quaternion product has been prohibitive to the development of quaternion uncorrelating transforms. To this end, we introduce novel techniques for a simultaneous decomposition of the covariance and complementary covariance matrices in the quaternion domain, whereby the quaternion version of the Takagi factorisation is explored to diagon...