International audienceThis paper introduces a Bayesian framework to detect multiple signals embedded in noisy observations, from an array of sensors. For various states of knowledge on the communication channel and the noise at the receiving sensors, a marginalization procedure based on random matrix theory techniques, in conjunction with the maximum entropy principle, is used to compute the Neyman-Pearson hypothesis testing criterion. Quite remarkably, although rather involved, explicit expressions for the Bayesian detector are derived which enable to decide on the presence of signal sources in a noisy wireless environment. Under the hypotheses that the true channel conditions adhere the maximum entropy model, the proposed detector is the ...