Given a graph $G$ and a spanning subgraph $T$ of $G$, a {\it backbone $k$-colouring} for $(G,T)$ is a mapping $c:V(G)\to\{1,\ldots,k\}$ such that $|c(u)-c(v)|\geq 2$ for every edge $uv\in E(T)$ and $|c(u)-c(v)|\geq 1$ for every edge $uv\in E(G)\setminus E(T)$. The {\it backbone chromatic number} $BBC(G,T)$ is the smallest integer $k$ such that there exists a backbone $k$-colouring of $(G,T)$. In 2007, Broersma et al. \cite{BFG+07} conjectured that $BBC(G,T)\leq 6$ for every planar graph $G$ and every spanning tree $T$ of $G$. In this paper, we prove this conjecture when $T$ has diameter at most four.Pour un graphe $G$ et un sous-graphe $T$ de $G$, une {\it $k$-coloration dorsale} de $(G,T)$ est une application $c:V(G)\to\{1,\ldots,k\}$ tell...
International audienceA function f:V(G)→{1,…,k}f:V(G)→{1,…,k} is a (proper) k-colouring of G if |f...
International audienceA function f:V(G)→{1,…,k}f:V(G)→{1,…,k} is a (proper) k-colouring of G if |f...
International audienceConsider an undirected graph $G$ and a subgraph $H$ of $G$, on the same vertex...
Given a graph $G$ and a spanning subgraph $T$ of $G$, a {\it backbone $k$-colouring} for $(G,T)$ is ...
International audienceGiven a graph $G$ and a spanning subgraph $T$ of $G$, a backbone $k$-coloring ...
International audienceGiven a graph $G$ and a spanning subgraph $T$ of $G$, a backbone $k$-coloring ...
Consider an undirected graph G and a subgraph H of G, on the same vertex set. The q-backbone chromat...
International audienceGiven a graph $G$ and a spanning subgraph $T$ of $G$, a backbone $k$-coloring ...
International audienceA function f:V(G)→{1,…,k}f:V(G)→{1,…,k} is a (proper) k-colouring of G if |f...
International audienceA function f:V(G)→{1,…,k}f:V(G)→{1,…,k} is a (proper) k-colouring of G if |f...
Une fonction $f: V(G)\to \{1,\ldots,k\}$ est une $k$-coloration (propre) de $G$ si $|f (u) - f (v)|...
Une fonction $f: V(G)\to \{1,\ldots,k\}$ est une $k$-coloration (propre) de $G$ si $|f (u) - f (v)|...
Une fonction $f: V(G)\to \{1,\ldots,k\}$ est une $k$-coloration (propre) de $G$ si $|f (u) - f (v)|...
Une fonction $f: V(G)\to \{1,\ldots,k\}$ est une $k$-coloration (propre) de $G$ si $|f (u) - f (v)|...
International audienceA function f:V(G)→{1,…,k}f:V(G)→{1,…,k} is a (proper) k-colouring of G if |f...
International audienceA function f:V(G)→{1,…,k}f:V(G)→{1,…,k} is a (proper) k-colouring of G if |f...
International audienceA function f:V(G)→{1,…,k}f:V(G)→{1,…,k} is a (proper) k-colouring of G if |f...
International audienceConsider an undirected graph $G$ and a subgraph $H$ of $G$, on the same vertex...
Given a graph $G$ and a spanning subgraph $T$ of $G$, a {\it backbone $k$-colouring} for $(G,T)$ is ...
International audienceGiven a graph $G$ and a spanning subgraph $T$ of $G$, a backbone $k$-coloring ...
International audienceGiven a graph $G$ and a spanning subgraph $T$ of $G$, a backbone $k$-coloring ...
Consider an undirected graph G and a subgraph H of G, on the same vertex set. The q-backbone chromat...
International audienceGiven a graph $G$ and a spanning subgraph $T$ of $G$, a backbone $k$-coloring ...
International audienceA function f:V(G)→{1,…,k}f:V(G)→{1,…,k} is a (proper) k-colouring of G if |f...
International audienceA function f:V(G)→{1,…,k}f:V(G)→{1,…,k} is a (proper) k-colouring of G if |f...
Une fonction $f: V(G)\to \{1,\ldots,k\}$ est une $k$-coloration (propre) de $G$ si $|f (u) - f (v)|...
Une fonction $f: V(G)\to \{1,\ldots,k\}$ est une $k$-coloration (propre) de $G$ si $|f (u) - f (v)|...
Une fonction $f: V(G)\to \{1,\ldots,k\}$ est une $k$-coloration (propre) de $G$ si $|f (u) - f (v)|...
Une fonction $f: V(G)\to \{1,\ldots,k\}$ est une $k$-coloration (propre) de $G$ si $|f (u) - f (v)|...
International audienceA function f:V(G)→{1,…,k}f:V(G)→{1,…,k} is a (proper) k-colouring of G if |f...
International audienceA function f:V(G)→{1,…,k}f:V(G)→{1,…,k} is a (proper) k-colouring of G if |f...
International audienceA function f:V(G)→{1,…,k}f:V(G)→{1,…,k} is a (proper) k-colouring of G if |f...
International audienceConsider an undirected graph $G$ and a subgraph $H$ of $G$, on the same vertex...