The paper concerns the computation of the graphical derivative and the regular (Fréchet) coderivative of the solution map to a class of generalized equations, where the multi-valued term amounts to the regular normal cone to a (possibly nonconvex) set given by C2 inequalities. Instead of the Linear Independence qualification condition, standardly used in this context, one assumes a combination of the Mangasarian-Fromovitz and the Constant Rank qualification conditions. On the basis of the obtained generalized derivatives, new optimality conditions for a class of mathematical programs with equilibrium constrains are derived, and a workable characterization of the isolated calmness of the considered solution map is provided