We study a singular-limit problem arising in the modelling of chemical reactions. At finite e>0, the system is described by a Fokker-Planck convection-diffusion equation with a double-well convection potential. This potential is scaled by 1/e, and in the limit eto0, the solution concentrates onto the two wells, resulting into a limiting system that is a pair of ordinary differential equations for the density at the two wells. This convergence has been proved in Peletier, Savaré, and Veneroni, em SIAM Journal on Mathematical Analysis, 42(4):1805--1825, 2010, using the linear structure of the equation. In this paper we re-prove the result by using solely the Wasserstein gradient-flow structure of the system. In particular, we make no use of t...