This paper deals with the parabolic-elliptic chemotaxis system with singular sensitivity and logistic source,\begin{equation}\begin{cases} u_t=\Delta u- \chi\nabla\cdot (\frac{u}{v} \nabla v)+u(a(t,x)-b(t,x) u), & x\in \Omega\cr 0=\Delta v- \mu v+ \nu u, & x\in \Omega \cr \frac{\partial u}{\partial n}=\frac{\partial v}{\partial n}=0, & x\in\partial\Omega,\end{cases}\end{equation} where $\Omega\subset\mathbb{R}^N$ is a smooth bounded domain, $a(t,x)$ and $b(t,x)$ are positive smooth functions, and $\chi$, $\mu$ and $\nu$ are positive constants. In the very recent paper [25], we proved that for every given nonnegative initial function $0\not\equiv u_0\in C^0(\bar\Omega)$ and $s\in\mathbb{R}$, (0.1) has a unique globally defined classical solu...
In this paper we study the zero-flux chemotaxis-system (Formula presented.) Ω being a convex smooth ...
In this paper we study the zero-flux chemotaxis-system (Formula presented.) Ω being a convex smooth ...
We consider classical solutions to the chemotaxis system with logistic source $f(u) := au-\mu u^2$ u...
summary:This paper deals with the chemotaxis system with signal-dependent sensitivity and logistic t...
summary:This paper deals with parabolic-elliptic chemotaxis systems with the sensitivity function $\...
summary:This paper deals with parabolic-elliptic chemotaxis systems with the sensitivity function $\...
summary:This paper deals with parabolic-elliptic chemotaxis systems with the sensitivity function $\...
This paper is devoted to studying the following quasilinear parabolic-elliptic-elliptic chemotaxis s...
summary:In this paper, we consider solutions to the following chemotaxis system with general sensiti...
This paper deals with a system of two coupled partial differential equations arising in chemotaxis, ...
We consider a nonlinear PDEs system of Parabolic-Elliptic type with chemotactic terms. The system mo...
summary:We study a quasilinear parabolic-parabolic chemotaxis system with nonlinear logistic source,...
In this paper we study the chemotaxis-system {ut=Δu−χ∇⋅(u∇v)+g(u)x∈Ω,t>0,vt=Δv−v+ux∈Ω,t>0, defined i...
This paper deals with a system of two coupled partial differential equations arising in chemotaxis, ...
summary:We study a quasilinear parabolic-parabolic chemotaxis system with nonlinear logistic source,...
In this paper we study the zero-flux chemotaxis-system (Formula presented.) Ω being a convex smooth ...
In this paper we study the zero-flux chemotaxis-system (Formula presented.) Ω being a convex smooth ...
We consider classical solutions to the chemotaxis system with logistic source $f(u) := au-\mu u^2$ u...
summary:This paper deals with the chemotaxis system with signal-dependent sensitivity and logistic t...
summary:This paper deals with parabolic-elliptic chemotaxis systems with the sensitivity function $\...
summary:This paper deals with parabolic-elliptic chemotaxis systems with the sensitivity function $\...
summary:This paper deals with parabolic-elliptic chemotaxis systems with the sensitivity function $\...
This paper is devoted to studying the following quasilinear parabolic-elliptic-elliptic chemotaxis s...
summary:In this paper, we consider solutions to the following chemotaxis system with general sensiti...
This paper deals with a system of two coupled partial differential equations arising in chemotaxis, ...
We consider a nonlinear PDEs system of Parabolic-Elliptic type with chemotactic terms. The system mo...
summary:We study a quasilinear parabolic-parabolic chemotaxis system with nonlinear logistic source,...
In this paper we study the chemotaxis-system {ut=Δu−χ∇⋅(u∇v)+g(u)x∈Ω,t>0,vt=Δv−v+ux∈Ω,t>0, defined i...
This paper deals with a system of two coupled partial differential equations arising in chemotaxis, ...
summary:We study a quasilinear parabolic-parabolic chemotaxis system with nonlinear logistic source,...
In this paper we study the zero-flux chemotaxis-system (Formula presented.) Ω being a convex smooth ...
In this paper we study the zero-flux chemotaxis-system (Formula presented.) Ω being a convex smooth ...
We consider classical solutions to the chemotaxis system with logistic source $f(u) := au-\mu u^2$ u...