Let A be an idempotent algebra on a finite domain. By mediating between results of Chen [1] and Zhuk [2], we argue that if A satisfies the polynomially generated powers property (PGP) and B is a constraint language invariant under A (that is, in Inv(A)), then QCSP(B) is in NP. In doing this we study the special forms of PGP, switchability and collapsibility, in detail, both algebraically and logically, addressing various questions such as decidability on the way. We then prove a complexity-theoretic converse in the case of infinite constraint languages encoded in propositional logic, that if Inv(A) satisfies the exponentially generated powers property (EGP), then QCSP(Inv(A)) is co-NP-hard. Since Zhuk proved that only PGP and EGP are...