In recent years Kernel Principal Component Analysis (Kernel PCA) has gained much attention because of its ability to capture nonlinear image features, which are particularly important for encoding image structure. Boosting has been established as a powerful learning algorithm that can be used for feature selection. In this paper we present a novel framework for object class detection that combines the feature reduction and feature selection abilities of Kernel PCA and AdaBoost respectively. The classifier obtained in this way is able to handle change in object appearance, illumination conditions, and surrounding clutter. A nonlinear subspace is learned for positive and negative object classes using Kernel PCA. Features are derived by projec...