Let A be a Noetherian Cohen-Macaulay domain, b, c1,...,cg an A-sequence, J = (b, c1,...,cg) A, and B = A[J/b]. Then B is Cohen-Macaulay, there is a natural one-to-one correspondence between the sets AssB(B/bB) and AssA(A/J), and each q ∈ AssA(A/J) has height g + 1. If B does not have unique factorization, then some height-one prime ideals P of B are not principal. These primes are identified in terms of J and P∩A, and we consider the question of how far from principal they can be. If A is integrally closed, necessary and sufficient conditions are given for B to be integrally closed, and sufficient conditions are given for B to be a UFD or a Krull domain whose class group is torsion, finite, or finite cyclic. It is shown that if P is a heigh...