Data-parallel applications, such as data analytics, machine learning, and scientific computing, are placing an ever-growing demand on floating-point operations per second on emerging systems. With increasing integration density, the quest for energy efficiency becomes the number one design concern. While dedicated accelerators provide high energy efficiency, they are over-specialized and hard to adjust to algorithmic changes. We propose an architectural concept that tackles the issues of achieving extreme energy efficiency while still maintaining high flexibility as a general-purpose compute engine. The key idea is to pair a tiny 10kGE (kilo gate equivalent) control core, called Snitch, with a double-precision floating-point unit (FPU) to a...