The goal of this paper is to increase the estimation performance of an Extended Kalman Filter for a nonlinear differentially flat system by planning trajectories able to maximize the amount of information gathered by onboard sensors in presence of both process and measurement noises. In a previous work, we presented an online gradient descent method for planning optimal trajectories along which the smallest eigenvalue of the Observability Gramian (OG) is maximized. As the smallest eigenvalue of the OG is inversely proportional to the maximum estimation uncertainty, its maximization reduces the maximum estimation uncertainty of any estimation algorithm employed during motion. However, the OG does not consider the process noise that, instead,...